welcome to my blog aksen cristian

aksen cristian <body><script type="text/javascript"> function setAttributeOnload(object, attribute, val) { if(window.addEventListener) { window.addEventListener('load', function(){ object[attribute] = val; }, false); } else { window.attachEvent('onload', function(){ object[attribute] = val; }); } } </script> <div id="navbar-iframe-container"></div> <script type="text/javascript" src="https://apis.google.com/js/platform.js"></script> <script type="text/javascript"> gapi.load("gapi.iframes:gapi.iframes.style.bubble", function() { if (gapi.iframes && gapi.iframes.getContext) { gapi.iframes.getContext().openChild({ url: 'https://www.blogger.com/navbar/2974262750920264642?origin\x3dhttp://aksencris.blogspot.com', where: document.getElementById("navbar-iframe-container"), id: "navbar-iframe" }); } }); </script>
.Tuesday, March 23, 2010 ' 9:35 PM Y
& your love is all i ever wanted

MATLAP 7.10
Here is the US Census data from 1900 to 2000.
 
 
% Time interval
t = (1900:10:2000)';

% Population
p = [75.995 91.972 105.711 123.203 131.669 ...
     150.697 179.323 203.212 226.505 249.633 281.422]';

% Plot
plot(t,p,'bo');
axis([1900 2020 0 400]);
title('Population of the U.S. 1900-2000');
ylabel('Millions');
What is your guess for the population in the year 2010?
p
p =

   75.9950
   91.9720
  105.7110
  123.2030
  131.6690
  150.6970
  179.3230
  203.2120
  226.5050
  249.6330
  281.4220
Let's fit the data with a polynomial in t and use it to extrapolate to t = 2010. The coefficients in the polynomial are obtained by solving a linear system of equations involving a 11-by-11 Vandermonde matrix, whose elements are powers of scaled time, A(i,j) = s(i)^(n-j);
n = length(t);
s = (t-1950)/50;
A = zeros(n);
A(:,end) = 1;
for j = n-1:-1:1, A(:,j) = s .* A(:,j+1); end
The coefficients c for a polynomial of degree d that fits the data p are obtained by solving a linear system of equations involving the last d+1 columns of the Vandermonde matrix:
A(:,n-d:n)*c ~= p
If d is less than 10, there are more equations than unknowns and a least squares solution is appropriate. If d is equal to 10, the equations can be solved exactly and the polynomial actually interpolates the data. In either case, the system is solved with MATLAB's backslash operator. Here are the coefficients for the cubic fit.
c = A(:,n-3:n)\p
c =

    1.2629
   23.7261
  100.3659
  155.9043
Now we evaluate the polynomial at every year from 1900 to 2010 and plot the results.
v = (1900:2020)';
x = (v-1950)/50;
w = (2010-1950)/50;
y = polyval(c,x);
z = polyval(c,w);

hold on
plot(v,y,'k-');
plot(2010,z,'ks');
text(2010,z+15,num2str(z));
hold off
Compare the cubic fit with the quartic. Notice that the extrapolated point is very different.
c = A(:,n-4:n)\p;
y = polyval(c,x);
z = polyval(c,w);

hold on
plot(v,y,'k-');
plot(2010,z,'ks');
text(2010,z-15,num2str(z));
hold off
As the degree increases, the extrapolation becomes even more erratic.
cla
plot(t,p,'bo'); hold on; axis([1900 2020 0 400]);
colors = hsv(8); labels = {'data'};
for d = 1:8
   [Q,R] = qr(A(:,n-d:n));
   R = R(1:d+1,:); Q = Q(:,1:d+1);
   c = R\(Q'*p);    % Same as c = A(:,n-d:n)\p;
   y = polyval(c,x);
   z = polyval(c,11);
   plot(v,y,'color',colors(d,:));
   labels{end+1} = ['degree = ' int2str(d)];
end
legend(labels,2)







THAT LADYY
Name: Aksen Cristian
Age : 21
I called Aksen Cristian, born in Bandung on 28 December 1988. Education: SDN 01 bandung, SMPN 3 Manna, Bengkulu SMA1, then I took classes at the Department of IT S1 YARSI University, Jakarta in aksencristian@gmail.com my email address

aksen cristian on Facebook

Anda Mau Berbinis Tanpa Modal Gabung aja disini dijamin berhasil

wirausaha online

Anda Mau Mencari Mobil Baru/Second klik aja Gambar Mobilnya

Iklan Mobil Bekas

Anda Mau Beli Rumah klik aja Gambar Rumahnya

Iklan Rumah

Temukan Jodoh Anda disini

kontak jodoh matrix
HE WANTSYY
Him:Yang datang di blog gue wajib coment ya,,,,hhehehe
new tops
Heeels

Your Coment Please .....!!!


CREDITSY




    Look at my blog